
Webradio to Spotify
Release 2.0

Eric Daoud

Feb 15, 2021

CONTENTS:

1 Installation 3

2 API 5

3 Web Interface 7

4 Contribute 9
4.1 Writing your own scraper . 9

5 Indices and tables 15

Python Module Index 17

Index 19

i

ii

Webradio to Spotify, Release 2.0

As a big fan of Classic Rock living in France, I am very frustrated by the lack of good classic rock radio we have. I
spent four months in St Louis, MO, and I had the chance to listen to KSHE 95 every day, playing some of my favorite
classic rock tunes. Unfortunately, I can’t listen to this radio in France as they block it. Fortunately, their website shows
the tune currently playing, as well as a few previous ones.

I decided to make myself an empty Spotify playlist, and automatically add in the KSHE tracks. I also wanted to be
able to add songs from other similar Classic Rock radio. So I built a reusable architecture that enables to register
different web scrapers to get the radio playing history and add that into my playlist.

So far, I am able to get the songs from these radios:

• KSHE95 (St Louis, MO)

• The Eagle 969 (Sacramento, CA)

• Q104.3 (New York, NY)

• 102.9 MGK (Philadelphia, PA)

• 95.5 KLOS (Los Angeles, CA)

Feel free to ping me if you want to help!

CONTENTS: 1

https://webradio-to-spotify.readthedocs.io/en/latest/?badge=latest
http://www.kshe95.com/
https://open.spotify.com/user/ericda/playlist/3BCcE8T945z1MnfPWkFsfX
https://www.kshe95.com/
https://eagle969.radio.com/
https://q1043.iheart.com/
https://wmgk.com/
https://www.955klos.com/

Webradio to Spotify, Release 2.0

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

To make it work, here’s what to do.

First, you’ll need to setup your Spotify developer account, and register an app. Find how here. Once your app is
created, you will have access to the following crendentials:

• client_id

• client_secret

• redirect_uri

Find you user_id (your spotify username) and add these 4 credentials in a file called .spotify-token.json.
You have a template here: .spotify-token.json.dist. The app will need those to update tracks to your playlist.

Note: in this application, the redirect URI must be http://localhost:9999/auth/callback.

Once you’re good, install the requirements in a virtual environment:

pip install virtualenv # if you don't have it already
virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

The app uses an sqlite database to store all the songs it has downloaded so far. You have to initialize the database
running this command: make init-db.

Here are the required steps to update your playlist with the latest songs from the KSHE radio:

• First, launch the server: make start-api. The app should now be running on http://
localhost:9999.

• Then, open your browser and go to http://localhost:9999/auth to authenticate to Spotify.

• Finally, run make update-playlist to get the latest songs in your playlist.

3

https://developer.spotify.com/web-api/
./.spotify-token.json.dist

Webradio to Spotify, Release 2.0

4 Chapter 1. Installation

CHAPTER

TWO

API

The calls supported so far are:

• GET, localhost:9999/api: Check that the API is up

• GET, localhost:9999/auth: Authenticate for 3600 seconds

• GET, localhost:9999/api/update_playlist: Updates the playlist with the latest songs

5

Webradio to Spotify, Release 2.0

6 Chapter 2. API

CHAPTER

THREE

WEB INTERFACE

7

https://raw.githubusercontent.com/ericdaat/webradio-to-spotify/master/screenshot.png

Webradio to Spotify, Release 2.0

8 Chapter 3. Web Interface

CHAPTER

FOUR

CONTRIBUTE

4.1 Writing your own scraper

If you want to add another website to populate the playlist, you can write a new scrapper in the src.scraping module.

Please follow these steps to do so:

• Create a class whose names ends with Scraper, e.g: YourScrapper (although it should be explicit
which website it crawls).

• Make that class inherit from Scraper

• Call for super() in its constructor, and pass it the URL of the webpage to crawl and the playlist_id
to upload the songs to. e.g:

player_url = 'https://radio.com/awesome-song-history'
playlist_id = '3BCcE8T945z1MnfPWkFsfX'
super(YourScrapper, self).__init__(player_url, playlist_id)

• Overide the get_song_history method, the first row should be:

soup, driver = self.scrap_webpage()

• Add your scraper in the tests folder:

class TestYourScraper(GenericScraperTest):
scraper = scraping.YourScraper()

• Add your scraper in the src.playlist_updater.Updater class:

self.scrapers = [
scraping.KSHEScraper(),
scraping.EagleScraper(),
scraping.YourScraper() # New scraper!

]

• You’re all set!

4.1.1 src

src package

Subpackages

9

./src/scraping.py
./tests/test_scraping.py
./src/playlist_updater.py

Webradio to Spotify, Release 2.0

src.application package

src.application.create_app()
Flask app factory that creates and configure the app.

Submodules

src.application.api module

src.application.api.index()

src.application.api.update_playlist()

src.application.auth module

src.application.auth.auth()

src.application.auth.callback()

src.application.web module

src.application.web.about()

src.application.web.auth()

src.application.web.index()

src.application.web.sync()

src.application.web.update()

src.application.wsgi module

Submodules

src.db module

class src.db.Song(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

album_image

album_name

artist_name

created_at

duration_ms

explicit

playlist_id

popularity

10 Chapter 4. Contribute

Webradio to Spotify, Release 2.0

scraper_name

song_name

spotify_uri

updated_at

src.playlist_updater module

class src.playlist_updater.Updater
Bases: object

add_songs_to_playlist(spotify_songs, playlist_id)
Add spotify songs to a playlist, using songs URI.

Parameters spotify_songs (list(dict)) – List of spotify songs

Returns Json response from the Spotify API

Return type json

filter_and_save_songs_to_db(spotify_songs, scraper_name, playlist_id)
Filter out songs that have already been added and add the remaining songs to the playlist.

Parameters

• spotify_songs (list(dict)) – List of spotify songs as dict

• scraper_name (str) – Scraper class name

Returns List of spotify songs that are not in the playlist yet

Return type list(dict)

scrap_and_update()
Run the whole pipeline for every scraper:

• Scrap the concerned website and get their song history

• Search for the songs in Spotify

• Filter the songs already in playlist and save them to DB

• Add the filtered songs to the playlist

Returns Inserted songs

Return type list(dict)

search_songs_in_spotify(radio_history)
Retrieve songs informations from title and artist using Spotify Search API.

Parameters radio_history (list(dict)) – list of dict with title and artist as keys

Returns list of dict of spotify songs

Return type list(dict)

single_scraper_pipeline(scraper)

spotify_auth()
Authenticates using Authorization Code Flow.

Returns URL to redirect to

4.1. Writing your own scraper 11

Webradio to Spotify, Release 2.0

Return type str

spotify_callback(authorization_code)
Function called by Spotify with access token in the request parameters.

Parameters authorization_code (str) – Authorization code

sync_db_with_existing_songs(playlist_id)
If the playlist already exist, look for songs in it and stores them in the local database so we don’t add
duplicates.

Parameters playlist_id (str) – Playlist ID

src.scraping module

Add new scrapers here. Please follow these steps to do so:

• Create a class whose names ends with Scraper, e.g: YourScrapper (although it should be explicit which website
it crawls).

• Make that class inherit from Scraper

• Call for super() in its constructor, and pass it the URL of the webpage to crawl and the playlist_id to upload the
songs to. e.g:

player_url = 'https://radio.com/awesome-song-history'
playlist_id = '3BCcE8T945z1MnfPWkFsfX'
super(YourScrapper, self).__init__(player_url, playlist_id)

• Overide the get_song_history method, the first row should be:

soup, driver = self.scrap_webpage()

• Add your scraper in the [tests](./tests/test_scraping.py) folder:

class TestYourScraper(GenericScraperTest):
scraper = scraping.YourScraper()

• Add your scraper in the [src.playlist_updater.Updater](./src/playlist_updater.py) class:

self.scrapers = [
scraping.KSHEScraper(),
scraping.EagleScraper(),
scraping.YourScraper() # New scraper!

]

• You’re all set!

class src.scraping.EagleScraper
Bases: src.scraping.Scraper

get_song_history()
Scrap the website and get its song history. This function must be overiden. Its implementation must return
a list of dict with the following keys:

• title

• artist

• timestamp (can be null, it’s not used so far)

12 Chapter 4. Contribute

Webradio to Spotify, Release 2.0

class src.scraping.KLOScrapper
Bases: src.scraping.Scraper

get_song_history()
Scrap the website and get its song history. This function must be overiden. Its implementation must return
a list of dict with the following keys:

• title

• artist

• timestamp (can be null, it’s not used so far)

class src.scraping.KSHEScraper
Bases: src.scraping.Scraper

get_song_history()
Scrap the website and get its song history. This function must be overiden. Its implementation must return
a list of dict with the following keys:

• title

• artist

• timestamp (can be null, it’s not used so far)

class src.scraping.Q1043Scrapper
Bases: src.scraping.Scraper

get_song_history()
Scrap the website and get its song history. This function must be overiden. Its implementation must return
a list of dict with the following keys:

• title

• artist

• timestamp (can be null, it’s not used so far)

class src.scraping.Scraper(player_url, playlist_id)
Bases: abc.ABC

abstract get_song_history()
Scrap the website and get its song history. This function must be overiden. Its implementation must return
a list of dict with the following keys:

• title

• artist

• timestamp (can be null, it’s not used so far)

scrap_webpage()
Scrap the webpage. This function must be called first in the get_song_history implementation.

Returns soup and driver

Return type tuple

class src.scraping.WMGKScrapper
Bases: src.scraping.Scraper

get_song_history()
Scrap the website and get its song history. This function must be overiden. Its implementation must return
a list of dict with the following keys:

4.1. Writing your own scraper 13

Webradio to Spotify, Release 2.0

• title

• artist

• timestamp (can be null, it’s not used so far)

src.spotify module

class src.spotify.SpotifyApi
Bases: object

add_tracks_to_playlist(track_uris, playlist_id)
Add spotify songs to playlist, using their URIs.

Parameters track_uris (list) – List of songs URIs.

Returns Reponse from the Spotify API

Return type json

check_playlist_exists(playlist_id)

get_track_uris_from_playlist(playlist_id)
Return the track URIs from the playlist

Returns the songs URIs

Return type set

search_track(track_name, artist_name)
Search for a track using the Spotify Search API.

Parameters

• track_name (str) – Track name

• artist_name (str) – Artist name

Returns Dict containing the song attributes

Return type dict

14 Chapter 4. Contribute

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

15

Webradio to Spotify, Release 2.0

16 Chapter 5. Indices and tables

PYTHON MODULE INDEX

s
src, 9
src.application, 10
src.application.api, 10
src.application.auth, 10
src.application.web, 10
src.db, 10
src.playlist_updater, 11
src.scraping, 12
src.spotify, 14

17

Webradio to Spotify, Release 2.0

18 Python Module Index

INDEX

A
about() (in module src.application.web), 10
add_songs_to_playlist()

(src.playlist_updater.Updater method), 11
add_tracks_to_playlist()

(src.spotify.SpotifyApi method), 14
album_image (src.db.Song attribute), 10
album_name (src.db.Song attribute), 10
artist_name (src.db.Song attribute), 10
auth() (in module src.application.auth), 10
auth() (in module src.application.web), 10

C
callback() (in module src.application.auth), 10
check_playlist_exists() (src.spotify.SpotifyApi

method), 14
create_app() (in module src.application), 10
created_at (src.db.Song attribute), 10

D
duration_ms (src.db.Song attribute), 10

E
EagleScraper (class in src.scraping), 12
explicit (src.db.Song attribute), 10

F
filter_and_save_songs_to_db()

(src.playlist_updater.Updater method), 11

G
get_song_history() (src.scraping.EagleScraper

method), 12
get_song_history() (src.scraping.KLOScrapper

method), 13
get_song_history() (src.scraping.KSHEScraper

method), 13
get_song_history() (src.scraping.Q1043Scrapper

method), 13
get_song_history() (src.scraping.Scraper

method), 13

get_song_history()
(src.scraping.WMGKScrapper method),
13

get_track_uris_from_playlist()
(src.spotify.SpotifyApi method), 14

I
index() (in module src.application.api), 10
index() (in module src.application.web), 10

K
KLOScrapper (class in src.scraping), 12
KSHEScraper (class in src.scraping), 13

P
playlist_id (src.db.Song attribute), 10
popularity (src.db.Song attribute), 10

Q
Q1043Scrapper (class in src.scraping), 13

S
scrap_and_update() (src.playlist_updater.Updater

method), 11
scrap_webpage() (src.scraping.Scraper method), 13
Scraper (class in src.scraping), 13
scraper_name (src.db.Song attribute), 10
search_songs_in_spotify()

(src.playlist_updater.Updater method), 11
search_track() (src.spotify.SpotifyApi method), 14
single_scraper_pipeline()

(src.playlist_updater.Updater method), 11
Song (class in src.db), 10
song_name (src.db.Song attribute), 11
spotify_auth() (src.playlist_updater.Updater

method), 11
spotify_callback() (src.playlist_updater.Updater

method), 12
spotify_uri (src.db.Song attribute), 11
SpotifyApi (class in src.spotify), 14
src (module), 9
src.application (module), 10

19

Webradio to Spotify, Release 2.0

src.application.api (module), 10
src.application.auth (module), 10
src.application.web (module), 10
src.db (module), 10
src.playlist_updater (module), 11
src.scraping (module), 12
src.spotify (module), 14
sync() (in module src.application.web), 10
sync_db_with_existing_songs()

(src.playlist_updater.Updater method), 12

U
update() (in module src.application.web), 10
update_playlist() (in module src.application.api),

10
updated_at (src.db.Song attribute), 11
Updater (class in src.playlist_updater), 11

W
WMGKScrapper (class in src.scraping), 13

20 Index

	Installation
	API
	Web Interface
	Contribute
	Writing your own scraper

	Indices and tables
	Python Module Index
	Index

